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Introduction

Symmetry as one of the main characteristics of material
objects causes many molecular properties. An analysis of
the molecular asymmetry is often necessary for quantum-
mechanical calculations, investigation of spectral proper-
ties of substances, stereochemistry of reactions and so on.
Several molecular modelling programs (Spartan [1],
Gaussian [2], SYMMAPS [3] etc.) allow point groups of
molecular symmetry to be determined. However, for some
”structure-activity” correlations it is necessary to know the
quantitative asymmetry measure of molecular objects with
respect to the specific symmetry elements. Here, the set of
methods and programs is limited. Universal approaches for
asymmetry measurement have been proposed by the authors

of the folding-unfolding (CSM) method [4] and, for quanti-
fying dissymmetry, the Dissymmetry Function method [5].
The first is considered in this article (for examples of the
practical applicability of the folding-unfolding method, see
ref. [6] and references therein).

Previous publications [4,7,8] are of a fundamental char-
acter and include good mathematical grounds of the main
folding / unfolding principles, but there has been no detailed
discussion of the practical realisation of this method.

Using the folding-unfolding method, we have concluded
that modification of several steps of the original algorithm
is expedient either for the method to work adequately for all
models or for the accurate definition of respective steps.

Two types of optimisation tasks should be resolved. The
first (combinatorial) has not been discussed previously, de-
spite its importance, since it limits the speed of the algo-
rithm and often requires rigorous calculations. As compared
to the exhaustive algorithm, the proposed procedure is more
efficient (Appendix A); it considerably decreases the vol-
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ume of the calculations. The second optimisation task (mini-
misation of function from several variables) has been reviewed
previously. However, only numerical optimisation has been
proposed for 3D structures. We have solved the given prob-
lem analytically, leading to the following advantage as com-
pared with numerical optimisation: quick detection of all
extrema including the global minimum.

The original folding-unfolding method. Ways for
optimisation

The essence of the discussed method is the following: the
asymmetry measure S(G) of a point object Pb with respect to
symmetry operation G is defined as:
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where a is total number of points of the object, 
bP
&&&  are the

corresponding points of the nearest G-symmetric object,
whose determination is the task of folding-unfolding algo-
rithm.

An attempt of application of the algorithm of the folding-
unfolding method for symmetry evaluation in the case of
equilateral triangle (length of side is 1.54 Å, like cyclopro-
pane) with respect to rotation axis C5 is given below. The
object is not scaled as ref. [4] requires (so that the maximum
distance of any point to the centroid is 1) since step 7 of the
following algorithm allows the application of an extended
set of normalisation options, e.g. from ref. [9]. Everywhere
we mean the 3D models.

The algorithm [4,7] consists of the following steps:

1. Allocation of unequivalent points (atoms) of the object in
groups. The authors of ref. [7] suggested searching for the
topologically unequivalent points according to an analysis of
the molecular graph isomorphism.

Example. All points are of the same type and they are
located in one group (Figures 1a and 1b).

Addition.  Differences in atom weights are not considered
in the original algorithm. We propose to distinguish atoms
by their nature and we use either the difference of the atom’s
chemical nature or the method of canonical labelling of mo-
lecular graphs CANON [10], which discriminates atoms eas-
ily according to the specificity of the task. It is possible to
apply algorithms with more hard atom discrimination for
structures with high topological symmetry, e.g. fullerenes or
frame structures [11].

2. Select a position in space for the symmetry element G
passing through the origin coinciding with the centre of mass.
There is no instruction concerning initial orientation of the
symmetry element, although this information is a very im-
portant part of the algorithm.

Concrete definition. We propose the three main inertial
axes of the object be put consistently in conformity to the
initial position of the symmetry element. It is proved by the
fact that when an object has any symmetry axis, then this
axis coincides with one of the main inertial axes [5,9]. The
main inertial axes are unambiguously determined for objects,
except spherical tops (three main inertia moments are the
same) or cylindrical tops (two main inertia moments are same)
only. Further detailed discussion is given in ref. [9].

Example. Let in both variants (Figures 1a1 and 1b1), the
symmetry element be perpendicular to the triangle plane and
pass through its centre. This position of the rotation axis co-
incides with one of the main inertia axes of  the equilateral
triangle.

3. Select a division of the points of the object into sets of n
points (n is the symmetry number, in our example 5; n corre-
sponds to the symmetry element order, but is not less than 2).
The most general instruction is the following: all groups of
points are divided into sets with numbers of points that are
divisors of n. If a set contains a single point, that point is
multiplied n times; if a set contains two points, each is mul-
tiplied n/2 times; . . .; if a set contains n points, nothing is
multiplied.

Example, original algorithm. There is a single way only:
each point is multiplied five times after location in different
sets (upper symbol means the multiplicability factor):

{ }P P P P P1 1 1 1 1

I II III IV V, , , , , { }P P P P P2 2 2 2 2

I II III IV V, , , , ,

{ }P P P P P3 3 3 3 3

I II III IV V, , , ,  (Figure 1a1).

Modification.  We propose that the following set forma-
tion is expedient: all groups of points are divided into sets,
where each point of a group can appear 0, 1, 2, …, n times in
each set (each set must have exactly n points, the point order
in sets is important). This process corresponds to ”sampling
with replacement” (the combinatorial mathematics term).

Example, modified algorithm. The following division
can be used (task of the selection of the best sets is resolved
by the procedure given in Appendix A, or by the exhaustive

approach): { }P P P P P1 1 3 2 2

I II I I II, , , ,  (Figure 1b1).

4. Fold each set of points by applying to each point of the
ordered set the G symmetry operation (j-1) times, where j is
the order number of this point in the set.

Example, original algorithm. Obtained points are:
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{ }V
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3 ,,,, PPPPP &&&&&  (Figure 1a2, where the first set is

shown only).
Example, modified algorithm. Obtained points are:

{ }II

2

I

2

I

3

II

1

I

1 ,,,, PPPPP &&&&&  (Figure 1b2).

5. Average each set of folded points. From each set the sin-
gle point multiplied n times is obtained.
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Figure 1 Scheme of the determination of asymmetry meas-
ure of the equilateral triangle with respect to the rotation
symmetry axis C5 using the  original (a1-a4) and the optimised
(b1-b4) folding-unfolding methods. Subfigures a2 and b2 con-

tain the folded points y

xP& of the original triangle. Subfigures
a4 and b4 contain the unfolded points y

xP&&&  forming the nearest
C3-symmetric object to the original triangle.
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Example, original algorithm. Obtained points are located

in the centre: { }V
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Example, modified algorithm. Obtained points are:
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6. Unfold each set of points by applying the G-1 symmetry
operation (reverse operation to G; (G-1)-1=G) to each aver-
aged point from the ordered set (j-1) times, where j is the
order number of this averaged point in the set. This process
forms a figure with the G symmetry element.

Example, original algorithm. Obtained points are located

in the centre: { }V
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Example, modified algorithm. Obtained points are:
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1 ,,,, PPPPP &&&&&&&&&&&&&&&  (Figure 1b4).

7. Difference between configurations obtained on steps 3 and
6 (i.e., distance between initial object and its symmetric ana-
logue) is defined according to:
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where S is the asymmetry value at the current division of
object into sets (see step 3) and at the current orientation of
symmetry element, M is the number of groups of points (see
step 2), N

k

/  is the number of points in group k after possible
multiplications of some points (N N

k k

/ ≥ , N
k

/  is multiple of
n, Nk is number of points in group k).

Example, original algorithm. For current orientation of
C5 axis: S(C5) = 0.79.

Modification.  In previous reports [4,7,8] all objects were
considered with unweighted points but simplification is of-

ten unacceptable for real tasks. We propose the following
more general variant of expression (2):
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where wk is the weight factor of group k. Several types of
normalisations of the value S (3) have recently been sug-
gested [9].

Example, modified algorithm. For current orientation of
C5 axis: S(C5) = 0.21.

8. Minimise the asymmetry value S by repeating steps 2-7
with all possible divisions of points into sets and for all pos-
sible orientations of the symmetry element.

Concrete definition. The consecutive scheme for realisa-
tion of the given step was not described [4,7,8]. The follow-
ing iterative circle for the algorithm is proposed:

a) selection of the initial orientation for symmetry ele-
ment;

b) determination of the best sets combination (with mini-
mal value S) for the current orientation of the symmetry ele-
ment;

c) determination of the best orientation for the symmetry
element for the current sets combination;

d) return to the step b) in case of reduction of value S.
Comment to step b). It is a very complicated combinato-

rial problem since the large number of equivalent atoms re-
quire numerous calculations. Previous reports have not dis-
cussed this problem. Therefore, we suppose that an exhaus-
tive procedure has been used. In Appendix A, the accelerated
tool is demonstrated..

Comment to step c). The authors of ref. [4] have demon-
strated that the necessary condition for the optimal position
of the symmetry element is when it passes through the object
centroid (this was also checked and applied for the weighted
objects). Attempts to solve the problem of optimisation of
symmetry element orientation for the current sets combina-
tion were undertaken [4]. This problem was solved analyti-

Figure 2 The final results of
the process shown in Figure
1 after checking all possible
divisions of points into sets
and all initial positions of the
rotation axis C5. It is shown
that the asymmetry measure
is less for the modified algo-
rithm (b) and its ”nearest”
symmetric object is closer
and preferable.
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cally for 2D objects, but only numerical methods have been
proposed for 3D. However, most of the real tasks concern 3D
objects, but the best result can be missed with such a numeri-
cal approach. We have resolved the given problem analyti-
cally for the general 3D weighted objects (see Appendix B).

Example, original algorithm. The best orientation of
symmetry element C5 is shown in Figure 2a. S(C5) = 0.40.

Example, modified algorithm. The best orientation of
symmetry element C5 and the best division of points into sets
are shown in Figure 2b. S(C5) = 0.21.

Discussion. It is seen that the asymmetry measure is less
for the modified algorithm (b) and its ”nearest” symmetric
object is closer and preferable. This difference is the result of
modifying step 3 of the folding-unfolding algorithm.

Results and discussion

The efficiency of each optimisation procedure is demonstrated
individually by comparison of the original and the optimised
folding-unfolding algorithms. In the following,  the original
method indicates the folding-unfolding method, where step
3 of the above-mentioned algorithm is without modification,
the combinatorial problem is solved by the trivial exhaustive
approach, and the orientation of the symmetry element is
optimised by the numerical approach. In contrast, the
optimised technique means the folding-unfolding method,
where step 3 of the above-mentioned algorithm is modified
as described in modification of step 3, the combinatorial prob-
lem is solved by the procedure described  in Appendix A, and
the orientation of the symmetry element is optimised by the
analytical approach from Appendix B. Atoms are distin-
guished by their chemical nature in both folding-unfolding
methods.

I. Modification of the step 3 of folding-unfolding algorithm
leads to the closer ”nearest symmetric shape” and, as a re-
sult, the asymmetry value decreases.

An example is shown in Figure 1 and 2 and other exam-
ples are listed in Table 1. Since the given modification af-
fects cases in which the symmetry number is more than 2
(i.e., all elements, except C2, S1, S2), the difference in asym-
metry values only occurs for these cases. Thus, the modifica-
tion is more efficient when the symmetry number is larger.

II. Optimisation of the combinatorial prob lem (see Ap-
pendix A). This modification allows the acceleration of cal-
culations of the results as compared with the exhaustive ap-
proach.

Since solution of the given combinatorial problem limits
the speed of calculation of the entire algorithm, we can ana-
lyse just the whole time of the calculation. In Table 1, the
calculation time for several molecular structures by both the
original and the optimised folding-unfolding methods are
shown.

Thus, a larger number of equivalent atoms requires much
more calculation time, but the proposed optimisation proce-
dure (see Appendix A) significantly accelerates the calcula-
tion (by a 1000 times, approximately, for objects with a large
number of equivalent points) as compared with the exhaus-
tive approach of the original folding-unfolding algorithm. The
shortest time of calculation as compared with the original
algorithm is for the symmetry elements S1, C2 (and, in fact,
S2). It is caused by the application of a special, very fast,
combinatorial algorithm of the P combinatorial class for these
symmetry elements, which accelerates the calculation excep-
tionally - in >>105 times.

III. Optimisation of problem of the best orientation of sym-
metry element (see Appendix B). This allows us to avoid
missing some minima of asymmetry values.

An example, where the better solution could be missed
(case b) with the original, numerical approach to searching
for the optimal orientation of the symmetry element, is given
in the Figure 3. The optimised analytical approach of Appen-
dix B overcame this problem (case a).

    S(S4) = 2.1014     S(S4) = 2.1125

a b

Figure 3 Example of the efficiency of the analytical solution
(a) of the problem of the symmetry element orientation com-
pared with the numerical solution (b), which allows to avoid
the missing of some minima of asymmetry values S. There are
the trans-trans-trans-perhydrotriphenylene, S4 symmetry ele-

ment, the topological location of atoms in groups based on
the CANON [10] algorithm. The atom labels denote the group
numbers, where atoms are located. For clarity, the single
modified step 3 of the folding-unfolding algorithm has been
used in both cases.
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Conclusion

The optimised algorithm of the folding-unfolding method runs
more exactly and more quickly due to the proposed two
optimisation procedures and some modifications.

The optimised and original folding-unfolding (CSM) meth-
ods, together with methods for the overall chirality measure-
ment [12] and the Dissymmetry Function [5] were included
into the program DisFact [13]. It allows the calculation of
different asymmetries for various types of molecular struc-
tures.

Acknowledgment We are grateful to Prof. D. Avnir (Hebrew
University of Jerusalem, Israel) and Dr. Sci. S. S. Tratch
(Moscow State University, Russia) for useful discussion of
the folding-unfolding method. Financial support from INTAS
foundation through the project INTAS-UA 97-17 30 is grate-
fully acknowledged.

References and notes

1. Spartan software. Wavefunction, Inc, 18401 Von Karmen
Ave., Suite 370, Irvine, CA 92612 USA.
http://www.wavefun.com

2. Gaussian software. Gaussian, Inc, Carnegie Office park,
Building 6, Suite 230, Carnegie, PA 15106 USA.
http://www.gaussian.com

3. SymApps software. Bio-Rad Laboratories, Sadtler Divi-
sion, U.S. Headquarters, 3316 Spring Garden Street, Phila-
delphia, PA 19104-2596 USA.
http://www.softshell.com

4. Zabrodsky, H.; Peleg, S.; Avnir, D. J. Am. Chem. Soc.
1992, 114, 7843.

5. Kuz’min, V. E.; Stel’makh, I. B.; Bekker, M. B.; Pozigun,
D. V. J. Phys. Org. Chem. 1992, 5, 295.

6. Pinto, Y.; Salomon Y.; Avnir, D. J. Math. Chem. Soc. 1998,
23, 13.

7. Zabrodsky, H.; Avnir, D. J. Am. Chem. Soc. 1995, 117,
462.

8. Zabrodsky, H.; Peleg, S.; Avnir, D. J. Am. Chem. Soc.
1993, 115, 8278.

9. Alikhanidi, S. E.; Kuz’min, V. E. Zh. Strukt. Khim. 1998,
39, 543.

10. Ugi, I.; Dugundij, J.; Kopp, R.; Marquarding, D. Perspec-
tives in Theoretical Stereochemistry; Springer-Verlag:
Berlin, Heidelberg, 1984.

11. Laidbocur, T.; Cabrol-Bass, D.; Ivanciuc, O. J. Chem. Inf.
Comput. Sci. 1996, 36, 811.

12. Alikhanidi, S. E.; Kuz’min, V. E. Reports of NAS of
Ukraine, 1999, 3, 138.

13. DisFact software for quantitative analysis of chirality and
specific asymmetry of molecular structures: version 3.10
of 1999 year, authors are S. Alikhanidi and V. Kuz’min
from Odessa State University of Ukraine. For free demo
version and more information,
http://www.chat.ru/~theochem/disfact.htm

14. Hu, T. C. Integer Programming and Network Flows;
Addison-Wesley: Menlo Park, California, London and Don
Mills, Ontario, 1970.

15. Christofides, N. Graph Theory. An Algorithmic Approach;
Academic: New York, London and San Francisco, 1975.

16. Balas, E. Oper. Res. 1965, 13, 517.

Structure Nmax symm. method C2 axis S1 axis C3 axis S4 axis
point group

milk acid 6 C1 M1 .335/ 6 s .175/ 3 s .743/ 6 s 1.209/ 8 s
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M2 .000/ 2 s .000/ 2 s 1.26/ 450 s 1.320/ 125 s

tetrahelicene 18 C2 M1 – – – –
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Table 1 The analysis of the difference in the evaluated
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66 processor). Nmax is the maximal number of equivalent at-
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Appendix A: Determination of the optimal combination
of sets of points for current orientation of the
symmetry element

The expression numerator (3) corresponds to the non-nor-
malised asymmetry measure. Therefore, it is possible to be
limited by optimisation of this numerator only, since
optimisation of entire fraction (3) requires solution of an ex-
tremely difficult task of nonlinear programming.

The overall task for the whole object can be divided into
M (number of groups of points) smaller tasks (for each group
individually) since the construction of sets from points of
different types (groups) is forbidden. Now we work with each

group [ ]k M∈ 1,  individually.

Let us consider that we have generated all possible sets of
points (their number is Nrow) according to the requirement of
step 3 of folding-unfolding algorithm (e.g. for modified step

3, N C
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points in group k). The problem we want to solve is, how
could we find the such combination of sets containing all
points of the group (one more constraint may require each
point to be located in one set only), which has the lowest
asymmetry value?

The trivial exhaustive algorithm solves this problem in
2Nrow iterations. Since very often Nrow is >100, this approach
requires too many calculations (>>1030 iterations) for the exact
solution.

We formulated this problem as a Boolean programming
task [14] to minimise:
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where N is the number of points in group k; Nrow is the number
of all available sets of points in group k according to the
requirement of step 3 of the folding-unfolding algorithm; ∆l
is the nonnormalised asymmetry value of set l

( ∑
=

−=∆
n

i

iil PP
1

2
&&& - over all points of set l where i is number

of point of set); xl is the Boolean variable, which is equal

either 1 or 0 that is either the set l is taken into account in the
solution or not; parameter ajl = 1 if set l includes point j,
otherwise ajl  = 0; n is the symmetry number of given symme-
try element.

Constraint (5) corresponds to the original folding-unfold-
ing algorithm (each point must be only in one set of the opti-
mal solution) and is also accepted in its optimised version,
but the alternative constraint (6) (each point must be at least
in one set of the optimal solution) can also be useful for some
tasks. The choice of constraints depends on the user.

Generally, the Boolean programming tasks (the particular
case of integer programming) are the difficult to solve NP-
full tasks [14], i.e.,. methods for solution have exponential
working time from the dimension of task (Nrow in our case).
In this connection, attempts to separate the particular cases
for solving the polynomial (tasks of P-class) are expedient.

For the case of n=2 and constraint (5), we succeeded in
formulating the given combinatorial problem as the task of
”minimal cost matching in general graph” [15]. This solu-
tion algorithm requires a polynomial working time. For the
formulation of the task the full graph (2N vertices) should be
described. The weight of each edge of the graph depends on
the end vertices x and y ( [ ]x y N, ,∈ 1 2 ) of that edge by the
following: (first one true item only)
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y
&&&− , if x - N = y;     e) 0,

if x >N and y >N;     f) ∞ else.
Application of this P-solvable task accelerates the com-

putation extremely and allows us to calculate exactly the struc-
tures with numerous equivalent points: e.g. fullerenes with
hundreds of atoms (Nrow is near ten thousand and over).

The additive algorithm of Balas [14,16] has been used for
solution of the general case of task (4) (NP-full task). While
the asymptotic time for this algorithm is the same as for the
exhaustive algorithm (2Nrow iterations), usually the first algo-
rithm works much more rapidly.

The above-mentioned additive algorithm of Balas and the
algorithm for solving the task of minimal cost matching in
general graph are too bulky to be described here, but are well
explained in the corresponding references [14,15,16].

Appendix B: Determination of the optimal orientation of
symmetry element for the current combination of sets
of points

The proposed structure of the original algorithm [4] (fold-
ing, averaging, unfolding and following ”comparison” (step
7 of folding-unfolding algorithm) of the obtained points with
initial points) has been probably described for the visual per-
formance of the search process for the asymmetry measure.
From the computing point of view, another structure (identi-
cal to first by result) is more acceptable: folding, averaging
and ”comparison” of the obtained points with folded ones.
Then, for the current combination of sets, the numerator of
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value S (3) (denominator is fixed in this procedure) can be
rewritten as the following:
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where m is the total number of sets into which the object is
divided; i and i_ are different variables meaning numbers of
points in set k.

The problem we want to solve is, how could we find the
best orientation of the symmetry axis (for current combina-
tion of sets)?

For this purpose let us consider that the current orienta-
tion of the symmetry element is put along Z crossbar axis
and the centre of mass coincides with the origin. Then the x,
y, z components of the folded points are the following:
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where j=1,2,..., n is number of a point in set k, n/ is the sym-
metry element order (i.e. lower symbol of the symmetry ele-
ment name); points Pj

k  of rotated object are defined as:

P AP
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k= (10)

where rotation matrix A is:
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where X, Y, Z are directional cosines determining orientation
of the given symmetry element. For creation of the rotation
matrix A, the symmetry element has been put along the Z
crossbar axis and other matrix elements have been chosen

under constraints of the rotation matrix, i.e., all their vectors
(crossbar axes) must be orthonormal (det A=1).

Now we try to find the best X, Y, Z values analytically.
After substitution of equation (8) - (11) into equation (7) and
further bulky simplifications, we can obtain the following
expression:

S = ( )

( ) )
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and:
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All extrema of expression (12) in respect with X, Y, Z can be
found analytically using Lagrange multipliers under constraint
X2+Y2+Z2=1 (values A1-A15 are constants). The global mini-
mum found corresponds to directional cosines of the optimal
orientation of the given symmetry element for the current
combination of sets of points.
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