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Abstract This article concerns the study of the folding-unfolding (Continuous Symmetry Measure,
CSM) method of Avnir et al. (Zabrodsky, H.; Peleg, S.; AvnirJDAm. Chem. So&992 114, 7843)

for quantitative evaluation of the asymmetry of molecular objects. It is shown that a series of modifica-
tions to the folding-unfolding method are expedient. An efficient solution for optimisation problems in
the folding-unfolding method has been proposed. It allows a significant speed up of the calculations
and provides better results. Differences in the behaviours of the original and optimised folding-unfold-
ing methods for various molecular structures are investigated.

Keywords Methods for QSPR, Mathematical chemistry, Quantitative asymmetry

of the folding-unfolding (CSM) method [4] and, for quanti-
fying dissymmetry, the Dissymmetry Function method [5].

. L .~ The first is considered in this article (for examples of the
Symmetry as one of the main characteristics of materiahractical applicability of the folding-unfolding method, see

objects causes many molecular praer Ananalysis of et [6] and references therein).

the molecular asymmetry is often necessary for quantum-  previous publications [4,7,8] are of a fundamental char-
mechanical calculations, investigation of spectral properycter and include good mathematical grounds of the main
ties of substances, stereochemistry of reactions and so Ofy|ding / unfolding principles, but there has been no detailed
Several molecular modelling programs (Spartan [1],discussion of the practical realisation of this method.
Gaussian [2], SYMMAPS [3] etc.) allow point groups of  ysing the folding-unfolding method, we have concluded
molecular symmetry to be determined. However, for SOM&hat modification of several steps of the original algorithm
"structure-activity” correlations it is necessary to know the g expedient either for the method to work adequately for all
quantitative asymmetry measure of molecular objects witlodels or for the accurate definition of respective steps.
respect to the specific symmetry elements. Here, the set of Ty types of optimisation tasks should be resolved. The
methods and programs is limited. Universal approaches fofirst (combinatorial) has not been discussed previously, de-
asymmetry measurement have been proposed by the auth@ite its importance, since it limits the speed of the algo-
rithm and often requires rigorous calculations. As compared
to the exhaustive algorithm, the proposed procedure is more
efficient (Appendix A); it considerably decreases the vol-
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ume of the calculations. The second optimisation task (mini- Concrete definition. We propose the three main inertial
misation of function from several variables) has been reviewseces of the object be put consistently in conformity to the
previously. However, only numerical optimisation has bedritial position of the symmetry element. It is proved by the
proposed for 3D structes. We haveolved the given prob- fact that when an object has any symmetry axis, then this
lem analytically, leading to the following advantage as coraxis coincides with one of the main inertial axes [5,9]. The
pared with numerical optimisation: quick detection of afhain inertial axes are unambiguously determined for objects,
extrema including the global minimum. except spherical tops (three main inertia moments are the
same) or cylindrical tops (two main inertia moments are same)
only. Further detailed discussion is given in ref. [9].
Example. Let in both variants (Figures land 1), the
symmetry element be perpendicular to the triangle plane and
pass through its centre. This position of the rotation axis co-

) ) _incides with one of the main inertia axes of the equilateral
The essence of the discussed method is the following: thgngle.

asymmetry measure G) of a point objecP, with respect to

The original folding-unfolding method. Ways for
optimisation

symmetry operigon G is defined as: 3. Select a divisionof the points of the object into sets rof
1@ . points f1is the symmetry number, in our examplegprre-
S(6) = " z"Pb - Pb" (1) sponds to the symmetry element order, but is not less than 2).
b=1

The most general instruction is the following: all groups of

points are divided into sets with numbers of points that are
where a is total number of points of the objecg, are the divisors ofn. If a set contains a single point, that point is
corresponding points of the nearedtsymmetric object, multiplied n times; if a set contains two points, each is mul-
whose determination is the task of folding-unfolding algdiplied n/2 times; . . .; if a set contains points, nothing is
rithm. multiplied.

An attempt of application of the algorithm of the folding- Example, original algorithm. There is a single way only:
unfolding method for symmetry evaluation in the case &ch point is multiplied five times after location in different
equilateral triangle (length of side is 1.54 A, like cycloprssets (upper symbol means the multiplicability factor):
pane) with respect to rotation axis S given below. The [ ,1 pu pm piv pv I pll pll pIV pV
object is not scaled as ref. [4] requi%res (so that the maximir]ﬁ PR AR } ’ {Pz BLELEE }
distance of any point to the centroid is 1) since step 7 of thg1 ,u pm pv pv ;
following algorithm allows the application of an extende NN AN AN } (Figure 1g).
set of normalisation optiong,g. from ref. [9]. Everywhere  Modification. We propose that the following set forma-
we mean the 3D models. tion is expedient: all groups of points are divided into sets,

The algorithm [4,7] consists of the following steps: ~ where each point of a group can appear 0, 1, 2y times in

each set (each set must have exactbpints, the point order
1. Allocation of unequivalent points (atoms) of the object iin sets is impdant). This process casponds to "sampling
groups. Theauthors of ref. [7] suggested searching for theith replacement” (the combinatorial mathematics term).
topologically unequivalent points according to an analysis of Example, modified algorithm. The following division
the molecular graph isomorphism. can be used (task of the selection of the best sets is resolved

Example. All points are of the same type and they ailgy the procedure given in Appendix A, or by the exhaustive
located in one group (Figures la and 1b). I ol pil pl pl pl .

Addition. Differences in atom weights are not considereacpproa(:h)'{Pl BLEBLBLE } (Figure 1f).
in the original algathm. We popose to distinguish atoms
by their nature and we use either the difference of the atodh's-old each set of points by applying to each point of the
chemical nature or the method of canonical labelling of merdered set th& symmetry operatiorj{l) times, wherg is
lecular graphs CANON [10], which discriminates atoms edfe order number of this point in the set.
ily according to the specificity of the task. It is possible to Example, original algorithm. Obtained points are:
apply algorithms with more hard atom discrimination fof:1 1 sm v pv 1A Sl IV BV
structures with high topological symmetry, e.g. fullerenes gp RLRTLRTLR } {P2 RERIENT Y }

r>
frame structures [11]. {P;,P;‘,P;“,P}‘V,P}V} (Figure 13, where the first set is

shown only).

2. Select a positionin space for the symmetry elemeGt Example, modified algorithm. Obtained points are:

passing through the origin coinciding with the centre of mass. === ™
There is no instruction concerning initial orientation of th II,R“,P;,P;,PZ"} (Figure 1b).
symmetry element, although this information is a very im-

portant part of the algorithm. 5. Averageeach set of folded points. From each set the sin-

gle point multipliedn times is obtained.
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Figure 1 Scheme of the determination of asymmetry meégain the folded pointsty of the original triangle. Subfigures
ure of the equilateral triangle with respect to the rotatioa, and [ contain the unfolded points’ forming the nearest

symmetry axis Qusing the original (ga,) and the optimised C,-symmetric object to the original triangle.
(b,-b,) folding-unfolding methods. Subfigureseaad b, con-
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Example, original algorithm. Obtained points are locatedten unacceptable foreal tasks. We pipose the following
in the centre{iﬁ‘,ﬁl“,iﬁm,151“’,}51"}, {P;,PZH,P;H,ﬁ;",ﬁz"}, more general variant of expression (2):

e e .. .. M N} .
{P;,P;‘ B ,P3‘V,P3V} (Figure 13). ; w, Z Hk/ P sz

Example, modified algorithm. Obtained points are: g = *= o @)
{pr. B BLEL B!} (Figure 19). 3w,

6. Unfold each set of points by agpig the G1 symmetry

operation (reverse opem to G; (G-l)-lzG) to each aver- Wherewk is the Weight factor of oup k. Several types of
aged point from the ordered s¢tl] times, wherg is the normalisations of the value S (3) have recently been sug-
order number of this averaged point in the set. This procgésted [9].

forms a figure with thés symmetry element. Example, modified algorithm. For current orientation of

Example, original algorithm. Obtained points are locatedCs axis: S(G) = 0.21.
, S S
in the centre{Pl Y SR } {Pz Py Py PP } 8. Minimise the asymmetry value S by repeating st2{%
SUOBT OB BV BV ; with all possible divisions of points into sets and for all pos-
{P3 SEREEIRE ’P% } (Figure ,19)' ) ) sible orientations of the symmetry element.

Example, modified algorithm. Obtained points are:  Concrete definition. The consecutive scheme for realisa-
{p‘l pu pl pl pn} (Figure 1k). tion of the given step was not described [4,7,8]. The follow-

Pohonaeneene ing iterative circle for the algorithm is proposed:

. i . . a) selection of the initial orientation for symmetry ele-
7. Difference between configurations obtained on stg@psd ) y Y

6 (i.e., distance between initial object and its symmetric ana-
logue) is defined according to:

b) determination of the best sets combination (with mini-
mal value S) for the current orientation of the symmetry ele-
ment;

M N
; ZH"/P—",PH2 c) determination of the best orientation for the symmetry
_ k= T element for the current sets combination;
& (2) d) return to the step) in case of reduction of value S.
;N’f Comment to step b)lt is a very complicated combinato-

rial problem since the large number of equivalent atoms re-
quire numerous calculations. Previous reports have not dis-
where S is the asymmetry value at the current division @fssed this prdém. Therefore, wsuppose that an exhaus-
object into sets (see st@p and at the current orientation otive procedure has been used. In Appendix A, the accelerated
symmetry elementyl is the number of groups of points (segol is demonstrated..
step2), N, is the number of points in grolgafter possible  Comment to step c)The authors of ref. [4] have demon-
multiplications of some points, > N, , N, is multiple of strated that the necessary condition for the optimal position

n, N, is number of points in grouy. _ _ of the symmetry element is when it passes through the object
Example, original algorithm. For current orientation of centroid (this was also checked and applied for the weighted
Cs axis: S(§) = 0.79. objects). Attempts to solve the problem of optimisation of

Modification. In previous reports [4,7,8] all objects wergymmetry element orientation for the current sets combina-
considered with unweighted points but simplification is ofton were undertakef#]. This prolem was solved analyti-

Figure 2 The final results of
the process shown in Figure
1 after checking all possible iCs
divisions of points into sets B PP P
and all initial positions of the TN
rotation axis G. It is shown

that the asymmetry measure
is less for the modified algo-
rithm (b) and its "nearest”
symmetric object is closer  Pi....P$
and preferable.

Original algorithm Modified algorithm

ol —V

P,,.1.,P,
I

S(C,) = 0.40 S(C,)=0.21
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cally for 2D objects, but only numerical methods have been An example is shown in Figure 1 and 2 and other exam-
proposed for 3D. However, most of the real tasks concerng8les arelisted in Table 1. Since the givenodification af-
objects, but the best result can be missed with such a nunfedts cases in which the symmetry number is more than 2
cal approach. We have resolved the given problem analyitie., all elements, except,CS;, S)), the difference in asym-
cally for the general 3D weighted objects (see Appendix B)etry values only occurs for these cases. Thus, the modifica-

Example, original algorithm. The best orientation of tion is more efficient when the symmetry number is larger.
symmetry element (s shown in Figure 2a. S{C= 0.40.

Example, modified algorithm. The best orientation of Il. Optimisation of the combinatorial problem (see Ap-
symmetry element Gand the best division of points into setpendix A). This modification allows the acceleration of cal-
are shown in Figure 2b. S{C= 0.21. culations of the results as compared with the exhaustive ap-

Discussion.It is seen that the asymmetry measure is lgaach.
for the modified algorithm (b) and its "nearest” symmetric Since solution of the given combinatorial problem limits
object is closer and preferable. This difference is the resultiué speed of calculation of the entire algorithm, we can ana-
modifying step3 of the folding-unfolding algorithm. lyse just the whole time of the calctiten. In Table 1, the
calculation time for several molecular structures by both the
original and the optimised folding-unfolding methods are
shown.

Thus, a larger number of equivalent atoms requires much
. o ) more calculation time, but the proposed optimisation proce-
The efficiency of each optimisation procedure is demonstrat@sle (see Appendix Agignificantly accelerates the calcula-
individually by comparison of the original and the optimisegy, (by a 1000 times, approximately, for objects with a large
folding-unfolding algorithms. In the following, the original,ymper of equivalent points) as compared with the exhaus-
method indicates the folding-unfolding method, where stge approach of the original folding-unfolding algbm. The
3 of the above-mentioned algorithm is without modificatioRortest time of calculation as compared with the original
the combinatorial problem is solved by the trivial exhaustl\é@gorithm is for the symmetry elements §, (and, in fact,
apprqach, and the orientation of the symmetry element i§_ It is caused by the application of a special, very fast,
optimised by the numerical approach. In contrast, tegmpinatorial algorithm of the combinatorial class for these

optimised technique means the folding-unfolding methogymmetry elements, which accelerates the calculation excep-
where stefB of the above-mentioned algorithm is modifiegionally - in >>16 times.

as described in modification of st8pthe combinatorial prob-

lem is solved by the procedure described in Appendix A, andoptimisation of problem of the best orientation of sym-

the orientation of the symmetry element is optimised by thestry element (see Appendix B)This allows us to avoid

analytical approach from Appendix B. Atoms are distifpissing some minima of asymmetry values.

guished by their chemical nature in both folding-unfolding ap example, where the better solution could be missed

methods. (case b) with the original, numerical approach to searching
for the optimal orientation of the symmetry element, is given

|. Modification of the step 3 of folding-unfolding algorithm i the Figure 3. The optimised analytical approach of Appen-
leads to the closer "nearest symmetric shape” and, as ag{2-B overcame this problem (case a).

sult, the asymmetry value decreases.

Results and discussion

S(S,)=2.1014 S(S,)=2.1125

Figure 3 Example of the efficiency of the analytical solutioment, the topological location of atoms in groups based on
(a) of the problem of the symmetry element orientation cotimne CANON [10] algathm. Theatom labels denote the group
pared with the numerical solution (b), which allows to avoidumbers, where atoms are located. For clarity, the single
the missing of some minima of asymmetry values S. Therenaoelified ste8 of the folding-unfolding algorithm has been
the trans-trans-tranperhydrotriphenylene, SSymmetry ele- used in both cases.
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Table 1 The analysis of the difference in the evaluatathta means too long calculation time (>10 hours by Pentium
unweighted asymmetry S values (numerators in cells havéi@processor)N, ., is the maximal number of equivalent at-
fractions) and the calculation time (denominators in cellsms in molecules. The discrimination of atoms is based on
having fractions, in seconds) between the original (M1) atitkir chemical nature

optimised (M2) folding-unfolding methods. The absence of

Structure N ax symm. method G axis S axis G, axis S, axis
point group

milk acid 6 (o} M1 .335/6s 175/ 3 s 743/ 6's 1.209/ 8 s

M2 .335/4s 175/ 5s 567/ 7s 1.149/5s
glucose 12 ¢ M1 503/ 575 s .213/ 500 s 876/ 540 s 1.170/ 2205 s

M2 503/ 6s 213/ 6s 789/ 9 s 1.141/ 27 s
phenanthrene 14 5 M1 .000/ 4500 s .000/ 4850 s - -

M2 .000/ 2s .000/ 2's 1.26/ 450 s 1.320/ 125 s
tetrahelicene 18 c M1 - - - -

M2 .000/ 8's 150/ 7 s .860/ 8905s  .955/4535s
fullerene G 76 D, M1 - - - -

M2 .000/ 12 s 151/ 36's - -
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Appendix A: Determination of the optimal combination either 1 or O that is either the $é$ taken into account in the

of sets of points for current orientation of the solution or not; parametesy, = 1 if setl includes pointj,
P otherwiseg, = 0;nis the symmetry number of given symme-
symmetry element try element

Constraint (5) corresponds to the original folding-unfold-
The expression numerator (3) corresponds to the non-nag algorithm (each point must be only in one set of the opti-
malised asymmetry measure. Therefore, it is possible torRgl solution) and is also accepted in its optimised version,
limited by optimisation of this numerator only, sinc@ut the alternative constraint (6) (each point must be at least
optimisation of entire fraction (3) requires solution of an ek one set of the optimal solution) can also be useful for some
tremely difficult task of nonlinear programming. tasks. The choice of conaints depends on the user.

The overall task for the whole ObjeCt can be divided into Genera”y, the Boolean programming tasks (the particu|ar
M (number of groups of points) smaller tasks (for each grogise of integer programming) are the difficult to s\
individually) since the construction of sets from points @fji| tasks [14], i.e.,. methods for solution have exponential
different types (groups) is forbidden. Now we work with eagRorking time from the dimension of task.(, in our case).

s B In this connection, attempts to separate the particular cases
group kD[L M] individually. for solving the polynomial (tasks &#-class) are expedient.

Let us consider that we have generated all possible sets oFor the case ofi=2 and constraint (5), we succeeded in
points (their number il ) according to the requirement offormulating the given combinatorial problem as the task of
step3 of folding-unfolding algorithm (e.g. for modified step’minimal cost matching in general grapft5]. This solu-

min(n,N) minn) 7Y tion algorithm requires a polynomial working time. For the
3, N, = Z C, = —— \whereN is number of formulation of the task the full graphN2ertices) should be

row i

= S il(N-i)! described. The weight of each edge of the graph depends on

points in goup K). The problem we want to solve is, hovthe end veices x andy (x,yD[lﬂN]) of that edge by the
could we find the such combination of sets containing #@llowing: (first one true item only)
points of the group (one more constraint may require each )
point to be located in one set only), which has the lowest® ® if x5y, b)
asymmetry value?

The trivial exhaustive algorithm solves this problem iﬂ\fp—f}'i
2Nrow jterations. Since very ofteN,, is >100, this approach
requires too many calculations (>340erations) for the exact if Xx>N andy >N;  f) « else.

*if x<=Nandy <=N.  c)

‘PP

2 . w2
Lify-N=x; d)H}’fP—}’fP‘ Jifx-N=y, €)0,

solution. Application of this P-solvable task accelerates the com-
We formulated this problem as a Boolean programmiigtation extremely and allows us to calculate exactly the struc-
task [14] to minimise: tures with numerous equivalent points: e.g. fullerenes with

hundreds of atomd\(,, is near ten thousand and over).

The additive algorithm of Balas [14,16] has been used for
solution of the general case of task MP{full task). While
the asymptotic time for this algorithm is the same as for the
exhaustive algorithm (W iterations), usually the first algo-
rithm works much more rapidly.
Ny . The above-mentioned additive algorithm of Balas and the
Zaﬂxl =L j=L..N, (5) algorithm for solving the task of minimal cost matching in
general graph are too bulky to be described here, but are well
explained in the corresponding references [14,15,16].

‘Vl ‘oW

Suomin, = ) DX, (4)

nomin.

or
N,ow
x, 21 i=1,...,.N . . .. . . .
;af’x’ o ' 6) Appendix B: Determination of the optimal orientation of
symmetry element for the current combination of sets
1= x, (integer) 20, /=1..,N, of points

whereN is the number of points ingupk; N, is the number The proposed structure of the original “aIgorithr_n [41 (fold-
of all available sets of points ina@p k according to the iNg, averaging, unfolding and following "comparison” (step
requirement of step of the folding-unfolding algorithma, 7 of folding-unfolding algorithm) of the obtained points with

is the nonnormalised asymmetryalue of set | initial points) has been probably described for the visual per-
formance of the search process for the asymmetry measure.
From the computing point of view, another structure (identi-
cal to first by result) is more acceptable: folding, averaging
a#nd "comparison” of the obtained points with folded ones.
Then, for the current combination of sets, the numerator of

P-P

n
i i
=

(&=2

of point of set);x is the Boolean variable, which is equ

2
- over all points of sdtwherei is number
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value S (3) (denominator is fixed in this procedure) can beder constraints of the rotation matrix, i.e., all their vectors

rewritten as the following: (crosshar axes) must be orthonormal @et).
Now we try to find the besK, Y, Z values analytically.
no : After substitution of equation (8) - (11) into equation (7) and
” ., zPl-_ further bulky simplifications, we can obtain the following
S =Sw 2 _pk expression:
nomin. ; k IZ n i (7)

Sromin. = (AL1- A6+ Al- A1Q ¥ +

+(A12- A9+ Al- A1Q Z2 +( A13- AR XV
wherem is the total number of sets into which the object is +(Al4—- A3 XZ+( AL5- Af Y& (12)
divided;i andi_ are different variables meaning numbers of — ABX - ASY- A4 Z+( Mo+ O+ A
points in sek.
The problem we want to solve is, how could we find the
best orientation of the symmetry axis (for current combinghere:

tion of sets)? m n
For this purpose let us consider that the current orient&t = Z W Z [(a1f)? +(a4k)?,
tion of the symmetry element is put along Z crossbar axis k=1  i=1

and the centre of mass coincides with theiorighen thex, il o .
y, zcomponents of the folded points are the following: ~ A2= Z Wi Z qatf a2 + a4’ aff],
k=1 1=1

ok - k Tk
PX/. =P c+P, s,

xj & o) A3= kzﬂ W ; 2[31|k 33< + a4< aé],

Py ==Pjs;+P,c (8)
Pr=p'k SRR
zj zj "y A4 = W, qazr a4ik - a ],
kZ:l ’ Z g af
here: il .
where A5 = Zwkz 2[aJ1" ad<‘a4ika34k],
7T(j — l) k=1 1=1
¢; =cos(2———), m n
" AB= ) w ) [(a2()” +(a8l)?],
s, =sin(2 U ; 1)), kzzl ‘ ; =
n m n
DTS, O A= w 202 ad + a5 2]
J _5 1 for C,,/; k=1 i=1

A8= 5 a3 - aX ad],
;wk;aa a3 - aX ad]

wherej=1,2,...,n is number of a point in s&t ' is the sym-

m n
metry element ordei.€. lower symbol of the symmetry ele- pog=Y a3)? +(a6) ),
ment name); points? of rotated object are defined as: kzzl « ; [(a3)"+(aG)"] (13)
Pl = AP} (10) m o on
A10= Z W Z (a7)?,
where rotation matriA is: knz]l i;l
— 2
0 -7 Y 0O All—szZ(aff),
O 0 O k=1 i=1
O Vr+z2 v’ +22 0 m n ,
0y +2° -XY _xz O M2= Y w y (ag)?,
A=0 O =1 =
D\/Y2 +7’ \/Y2+Z2 \/Y2+Z2|:| (11) m n
% X Y z E A13=Zwk22a7%‘a8<,
k=1

whereX, Y, Z are directional cosines determining orientation m
of the given symmetry element. For creation of the rotatiog, - _ .
matrix A, the symmetry element has been put along the 5= z W 2a§< a&k,
crossbhar axis and other matrix elements have been chosen
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and:
n n
Z Xi G Z Z §
i_=1 i_=1
alf == ——-x'g, a§'=— —-zs,
n n
yIk_CI_ Xik_k1_
i_=1 i_=1
a2|k = n _yikciv a7|k =" n _Xlkkw
n n
> #da Vi ki
i=1 i=1
a3|k = n _Zikqv a&k = n ylkkl'
n n
Z Xik_ﬁ_ Z Zik_K_ (14)
i=1 i=1
a4l == n -x's, &= n -2'k;
n
Yik_ﬁ_
a5 == -ys,

All extrema of expression (12) in respect withy, Z can be
found analytically using Lagrange multipliers under constraint
X?+Y?+72=1 (valuesA1-Al5 are constants). The global mini-
mum found corresponds to directional cosines of the optimal
orientation of the given symmetry element for the current
combination of sets of points.
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